QUICK HELP
MAT 109 Statistics

Test for Difference of Means

Purpose: To use two different samples from two populations in order to make a conjecture on how the two population means compare.

Hypothesis:
\[H_0 : \mu_x = \mu_y \]
\[H_1 : \mu_x \neq \mu_y \text{ (two tailed test)} \]
\[\mu_x > \mu_y \text{ (one tailed; upper threshold)} \]
\[\mu_x < \mu_y \text{ (one tailed; lower threshold)} \]

Required Information:
- \(a \) = level of significance
- \(\bar{x} \) = sample mean for x population
- \(n_x \) = size of sample from x population
- \(\sigma_x \) = standard deviation of x population
- \(\bar{y} \) = sample mean for y population
- \(n_y \) = size of sample from y population
- \(\sigma_y \) = standard deviation of y population

Test Statistic:
\[z = \frac{\bar{x} - \bar{y} - (\mu_x - \mu_y)}{\sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}}} \]
\[\sigma_x^2 = \frac{\sigma^2_x}{n_x} \quad \sigma_y^2 = \frac{\sigma^2_y}{n_y} \]
\[\sigma_{\bar{x} \bar{y}} = \sqrt{\sigma_x^2 + \sigma_y^2} \]

Test Limit:
For a two tailed test, the test limit will be \(\pm z \) such that the area between \(-z\) and \(+z\) is \(1-a \).
Reverse look up \(\frac{1-a}{2} \).

For a one tailed test with an upper threshold, the test limit will be \(z \) such that the area to the right of \(z \) is \(a \). Reverse look up \(0.5 - a \).

For a one tailed test with a lower threshold, the test limit will be \(z \) such that the area to the left of \(z \) is \(a \). Reverse look up \(0.5 - a \).