Washington Signature
[ Search and Navigation ]   [ View Full Site ]
Offices & Services

Offices: Registrar - Catalog


NOTE: This page contains information from the 2012-2013 Catalog. It remains available for archival purposes only. For the most current WC Catalog content, please visit http://catalog.washcoll.edu and download this year’s edition.
Division of Natural Sciences and Mathematics


Physics is the most fundamental of sciences. Taking as its domain all forms of matter and energy, it seeks to discover the laws that govern motions of material objects and waves, and the interactions between particles. Application of these universal laws to systems ranging from atoms and molecules to clusters of galaxies gives rise to challenging problems whose solution requires creative insight alongside logical rigor and mathematical reasoning.

Study of physics helps the student understand the scientific method and its implications—how to make rational inferences from data and how to test hypotheses critically. It also leads to an appreciation of the aesthetic dimensions of a scientists work and the interrelationship of physics with other areas of knowledge and its technological applications. This aspect is particularly emphasized in courses intended for distribution.

Courses in the department are designed to develop the student’s competence in those fundamental areas of classical and modern physics that have played an important role in the evolution of physics. Familiarity with the art of scientific experimentation is provided through laboratory work that complements the study of theoretical principles. Computation—the third mode of “doing physics”—is emphasized at all levels.

The Physics Department prepares the major student in any career where problem-solving skills are required. Popular career options include graduate study in physics, industrial research, secondary school teaching, and professional careers in engineering and medicine. Most of our recent graduates have gone on to graduate studies in the physical sciences. Others have chosen to work in government or industrial laboratories or used their computer skills in the private sector.

Physics 100 and 110 are designed to serve the needs of students wishing to take a science course to meet distribution requirements. They do not assume any special mathematics or science preparation.

The Physics Major

The major in physics requires the following courses in physics and six auxiliary courses in related fields.

  • PHY 111. General Physics I
  • PHY 112. General Physics II
  • PHY 201. Electronics
  • PHY 204. Fundamentals of Modern Physics
  • PHY 301. Electromagnetism
  • PHY 304. Classical Mechanics
  • PHY 401. Selected Experiments
  • PHY 403. Quantum Physics
  • CHE 111. General Chemistry I
  • CHE 112. General Chemistry II
  • MAT 201. Differential Calculus
  • MAT 202. Integral Calculus
  • MAT 203. Multivariable Calculus
  • MAT 345. Differential Equations
  • One additional quantitative course

The additional course can be either an independent studies course (Physics 397 or 497), or with the permission of the advisor, an upper-division quantitative course from another department. The first option is recommended for students planning to pursue graduate studies in the physical sciences. The second option is recommended for students planning to seek work in industry immediately after graduation or to pursue a professional career. In their junior and senior years, physics majors are required to participate in a weekly seminar (Physics 399).

Students planning to major in physics should ideally take Physics 111, 112, and Mathematics 201, 202 in their freshman year. These courses constitute the foundation of the major and should be taken early to ensure timely progress towards graduation. In addition, the student is urged to complete the requirements in chemistry (Chemistry 111, 112) during the first two years. A score of four or better on an Advanced Placement examination may, with the approval of the appropriate academic department, earn course credit toward graduation and make the student eligible to take upper-level courses in the department. Physics majors intending to become certified high school teachers should inform the Education Department as early in their college careers as possible to assure proper scheduling.

Senior Capstone Experience

All students must fulfill the Senior Capstone Experience.

The Minor In Physics

The minor in physics requires a total of six semester courses in physics—Physics 111, 112, 201, 204, and two additional courses at or above the 200 level, excluding Physics 340, 395, and 399.

The Minor In Earth And Planetary Science

The Physics Department also offers a minor in Earth and Planetary Science. Courses contributing to this minor are grouped below as “Courses in Earth and Planetary Science.” For program details, see the “Earth and Planetary Science” section in this catalog.

Courses In Physics

100. Concepts in Contemporary Physics

This course traces the evolving concepts of space, time, and motion through the main contributions of Galileo, Newton, Einstein, and Bohr. Topics include: sizing up the universe surrounding us, the kinematics and dynamics of motion, the great conservation laws, the unification of space-time and gravity in the theories of special and general relativity, the physics of black holes, and the quantum structure of matter. There will be laboratory sessions, class demonstrations, and exercises.

110. Astronomy

A survey of the universe, beginning with the Earth, Moon, the planets, and the Sun, and continuing outwards to distant stars, galaxies, galactic clusters, superclusters, and large-scale structure. The emphasis will be on the interplay between physical theory and observation that leads to the modern astrophysical perspective of the universe. Topics include the origin and evolution of stars, formation of red giants, planetary nebulae, white dwarfs, neutron stars, supernovae, and black holes. We will explore the present state of our knowledge of these objects and how this knowledge is acquired. The course concludes with a discussion of quasars and the past, present, and future of the universe according to the Big Bang cosmology. There will be laboratory and observing sessions, demonstrations, and exercises.

111. General Physics I

An introduction to physics for science majors. Mechanics: kinematics and dynamics of particles, conservation laws, the universal law of gravitation and oscillations. Thermodynamics: internal energy, heat, work, entropy and their statistical foundations. One three-hour laboratory session per week. Co-requisite: Mathematics 201, or permission of the instructor. (Offered annually: Fall)

112. General Physics II

Waves: wave propagation, interference, and diffraction. Electric and magnetic fields: Coulomb’s law, Gauss’s law, electric potential, steady currents, magnetic forces, and Ampere’s law. Electromagnetic fields: Faraday’s law and Maxwell’s equations. Early quantum physics. One three-hour laboratory session per week. Prerequisite: Physics 111, co-requisite: Mathematics 202, or permission of the instructor. (Offered annually: Spring)

201. Electronics

The study of electronics as it is used in the physical sciences. Theory and operation of R-L-C electrical circuits, diodes, transistors, operational amplifiers, timers, and digital and microprocessor circuits. The course comprises three lecture hours and one three-hour laboratory session per week. Prerequisite: Physics 112. (Offered annually: Fall)

204. Fundamentals of Modern Physics

The first part of the course will explain the special theory of relativity: simultaneity, time dilation, length contraction, Lorenz’s transformations, and relativistic dynamics. The second part of the course will introduce the fundamental ideas of quantum physics: Planck’s hypothesis, Bohr’s model of the hydrogen atom, wave-particle duality, Schrödinger’s equation, and basic applications of the formalism to atomic and molecular physics. Prerequisite: Physics 112 and Mathematics 203, or permission of the instructor. (Offered annually: Spring)

301. Electromagnetism

Electric and magnetic fields in vacuum. A survey of experiments and theory leading to Maxwell’s equations. Topics include: electrostatics, electric currents, magnetic fields, electromagnetic induction, Maxwell’s equations, and electromagnetic waves. Prerequisite: Physics 204 and Mathematics 345, or permission of the instructor.

304. Classical Mechanics

Kinematics and dynamics of particles and rigid bodies. Topics include: Conservation laws, central forces, motion in non-inertial frames, small oscillations, and Lagrangian and Hamiltonian equations of motion. Prerequisite: Physics 112 and Mathematics 345, or permission of the instructor.

399. Physics Seminar

Weekly meetings of students and faculty. Students are required to read journal articles of current interest in physics and astronomy and give oral presentations summarizing their contents. One credit per semester. Can be taken up to four times for credit. Open for credit to physics majors and minors only. Prerequisite: Permission of the instructor.

401. Selected Experiments

Advanced experiments in mechanics, electromagnetism, waves, physical and geometrical optics, thermal and statistical physics, atomic, and nuclear physics. Prerequisite: Physics 204, or permission of the instructor.

403. Quantum Physics

An introduction to the fundamental principles of quantum mechanics: states and the principle of superposition, observables and operators, operator representations, and perturbation theory. There will be a discussion of selected applications of the theory to atomic, solid state, and nuclear physics. Prerequisite: Physics 301 and Mathematics 345, or permission of the instructor.

190, 290, 390, 490. Internship

194, 294, 394, 494. Special Topics

195, 295, 395, 495. On-campus Research

A ten-week, on-campus summer research project guided by a faculty mentor. Based on mutual interests, the student and faculty mentor develop a research project supported by a reading list and involving theoretical, laboratory, or field investigations supervised by the faculty mentor. Participants produce a final report detailing the findings of their research. Selection of students will depend on academic background, scholastic achievement, and the results of a personal interview with the faculty mentor. The course may be taken twice for credit. Not offered as pass/fail. Prerequisite: Permission of the instructor.

196, 296, 396, 496. Off-campus Research

197, 297, 397, 497. Independent Studies

The study of areas of physics not covered in other courses. Instructor and student will meet weekly to discuss any progress made. Designed for the student interested in pursuing a professional career in physics or engineering. Available to physics majors and others by agreement of instructor. Prerequisite: Permission of the instructor.

SCE. Senior Capstone Experience

The Senior Capstone Experience is required of all majors in Physics. It consists of an experimental, theoretical, or computational investigation of a current topic in physics under the guidance of a faculty mentor. Results of these investigations will be presented in two sessions of the weekly Physics Seminar, and may also result in conference posters or publication in professional journals. Academic credit equivalent to one semester course (four credits) is granted upon successful completion of the Senior Capstone Experience, and a grade of Honors, Pass or Fail will be recorded on the students transcript along with the title of the investigation.

Courses in Earth and Planetary Science

PHY 140. Exploring the Solid Earth

This course investigates the composition, structure, and dynamics of the solid Earth. The course reviews prominent theories for the origin of matter, the accretion and differentiation of the planets, and the structure of the Earth’s interior. The role of plate tectonics in driving the exchange of matter and energy between Earth systems is a central theme of the course, providing the theoretical context for understanding geological phenomena such as seismic activity, volcanism and mountain building. The course is designed to provide the necessary scientific and intellectual background for understanding a wide range of Earth phenomena, and to give students a greater appreciation for the origin and evolution of their planet. Includes three lecture-hours per week plus lab.

PHY 141. Atmosphere, Ocean and Environment

This course examines processes and features that characterize the Earth’s surface. The course focuses on the major Earth systems of land (lithosphere), air (atmosphere), and water (hydrosphere) and explores how these systems evolve and interact through geologic time. Examples include studying global air circulation and its effect on weather, examining links between ocean currents and global climate, and exploring how stream processes help to shape landscape. The role of plate tectonics in driving the exchange of matter and energy between Earth systems is also a central theme. The course is designed to provide the necessary scientific and intellectual background for understanding a wide range of Earth phenomena, and to give students a greater appreciation for their natural environment. Includes three lecture hours per week plus lab. Prerequisite: Physics 140.

PHY 340. Earth and Planetary Systems Studies

This course features a detailed examination of the unique interaction between the Earth’s geosphere, biosphere, hydrosphere and atmosphere, and how these systems contrast with those of the other planets in the solar system. The course includes a lecture and an integrated lab component. The lecture discussion and reading emphasizes the history of Earth systems, from the birth of the solar system and differentiation of the Earth, to the emergence of biological life, chemical evolution of the modern atmosphere, and the changes to the Earth’s climate, ocean and lithosphere throughout geologic history. The lab will introduce students to important tools in Earth Science research, including radiometric dating, chemical studies of natural materials, remote sensing and data base analysis. The course provides advanced students with the necessary scientific and intellectual background for pursuing further studies in Earth and planetary science, geography, and environmental studies. Includes three lecture-hours per week plus lab. Prerequisite: Physics 140 and 141.